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ABSTRACT

Two-Thickness and Multi-Thickness procedures [1] used in LaserComp’s 
FOX50 Heat-Flow-Meter instruments enable the total exclusion of thermal contact
resistance. Measurements without taking thermal contact resistance into account
may result in very large errors (as much as hundreds percent in case of thin
specimens of high thermal conductivity).

Recently, a new combined Guarded Hot Plate and Heat-Flow-Meter Method
[2] was developed. This combination of the two widely used traditional steady-state
methods (i.e. ASTM C177 / ISO 8302, and ASTM C518 / ISO 8301) provides very
accurate absolute (i.e. not related to a calibration standard) values of thermal
conductivity of many important materials such as ceramics, glasses, plastics, rocks,
polymers, composites, fireproof materials, etc.

A thin flat guarded heater of known area is placed between two flat-parallel
specimens of the same material and of different thicknesses. The stack is clamped
between two isothermal plates each having a heat flow meter and a temperature
sensor. After applying a constant electric power to the heater the heat fluxes through
each of the two specimens (and, consequently, the two heat flow meters’ signals) 
eventually reach some final thermal equilibrium values. Each of the equilibrium
heat fluxes is inversely proportional to the respective total thermal resistance–sum
of each specimen’s thermal resistance (thickness divided by thermal conductivity) 
and two surface contact resistances (which are assumed to be the same for the two
specimens). The absolute thermal conductivity of the specimens then can be
calculated using the measured electric power of the center of the heater,
temperatures of the heater and of the plates, thicknesses of the two specimens, and
the two heat-flow meters signals (Eq.1).



The Combined Guarded Hot Plate and Heat-Flow-Meter Method now has
been modified and tested for fast thermal conductivity measurements. A few
minutes after applying the electric power (i.e. long before reaching the final thermal
equilibrium, after reaching so-called “regular regime”) the absolute thermal 
conductivity of the specimens can be calculated using both heat-flow meters’ 
readings arrays and a special mathematical “prediction” procedure. Experimental 
checks (using reference materials –Pyrex 7740, Vespel SP1) of the new
procedures were completed.

Mathematical algorithms and Mathcad programs were developed using
Prony’s method to determine if the system has reached the “regular regime”, and 
using the Least Squares methods to calculate parameters of the system’s 
exponential relaxation toward the final thermal equilibrium.

INTRODUCTION

The equation for thermal conductivity, , based on our new combined
method [2] is:

=[(L2–L1) /(Th -Tp)] (W/A) / [(Q1 /Q2 )/(Q1c /Q2c ) - (Q1c /Q2c )/(Q1 /Q2 )] (1)

where L1 and L2 are the two specimens thicknesses, Th is temperature of the heater ,
Tp is temperature of the plates, W/A is electric power of the heater, W, divided by its
area, A, Q1 and Q2 are the heat flow meter signals, Q1c/Q2c1 is the ratio of the heat-
flow meter signals during the same specimens calibration procedure used to
eliminate the effect of the two heat-flow meters difference [2].

In all the steady-state methods the thermal conductivity can be calculated
only after reaching the full thermal equilibrium –i.e. only after the Fourier number
Fo = kt/L2 >>1, where k is the thermal diffusivity, t is time, and L is thickness of the
specimen. The thermal diffusivity, k, for materials like Pyrex 7740, Pyroceram
9606, and Vespel 1, is about 10-6 m2/s [3, 4], so a 20 mm-thick specimen
theoretically needs at least an hour. In practice, usually longer times are necessary
for the system to achieve steady state.

By recording the temperature of the heater and the two heat flow meter
signals after turning on the electric power, it is theoretically possible then to
calculate both thermal conductivity and thermal diffusivity of the specimens, to
exclude both thermal contact resistances (between heater and specimens, and
between specimens and plates). A.Tleoubaev (using boundary conditions of 3rd kind
and separation of variables) recently has found the analytical solution for this
transient thermal problem. The solution is not presented here because it is
cumbersome, and most probably, is hardly to be used in practice. Shirtliffe [5], and



Flynn and Gorthala [6] considered similar transient thermal problems for flat
specimens without contact resistance.

Theoretical consideration of the transient heat conduction in finite bodies for
large t shows that series of the thermal problem general solution [7]
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(where n are eigenvalues, vn are eigenfunctions of the problem, and Cn are
coefficients determined by the boundary and initial conditions)“rapidly converges, 
and, starting at certain time, the first term different from zero predominates over
the sum of the remaining terms. This corresponds to the physical fact that,
independently of the initial distribution, starting at some time, a “regular regime”
of a temperature field evolution is established in the body which has a temperature
“profile” invariant with time and the amplitude decreasing exponentially with 
time”[7]:

T(x,t) C1 v1(x) exp {- k 1 t} (3)

This can be used in practice for fast tests of thermal conductivity (and, in
future, probably, for thermal diffusivity calculations or, at least, estimations) using
the new combined Guarded Hot Plate and Heat-Flow-Meter method - i.e. result can
be “predicted” long before the system reaches the steady state. In our one-
dimensional case the general solution is [8]:
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where An and Bn are coefficients, and n are eigenvalues, which should be
determined from the problem’s boundary and initial conditions (two separate sets -
for each of the specimens by solving transcendent equations [8], [9]). So, after a
certain moment of time only a single (number 1) exponent “survives”, and the 
temperature distribution’s evolution inside the flat specimen can be described as:
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The single-exponent relaxation of the temperature field in the “regular 
regime” dramatically simplifies the mathematical formulas, and is very useful for 
practice. As a result, the “current” thermal conductivity calculated using Eq.(1)
relaxes to its final equilibrium value exponentially, and quite fast (because ratio of
the signals Q1/Q2 relaxes faster than the individual signals Q1 and Q2), and it can be
“predicted” using its approximation by a single exponent.



“PREDICTION” PROCEDURES

It is important to determine the time required for a system to reach the
“regular regime”, i.e. when the evolution of the calculated (using Eq. (1)) “current” 
thermal conductivity at large time t can be described by a single exponent. Prony’s 
method [10] using five equidistant (with, say, ~1 minute intervals) values of the
calculated “current” thermal conductivity seems to be the most appropriate for the 
task. The Mathcad 2000 Professional procedure (shown in Appendix 1) was used to
calculate the parameters of the two exponents (in the case of Pyrex specimens 6.60
mm and 19.08 mm thick). The procedure predicted the Pyrex’s thermal conductivity 
value of 1.094 W/mK very accurately long before reaching steady state. The value
of one of the exponents turned out to be negligibly small (2.084x10-9), which means
that the system reached the “regular regime”. 

Fig. 1 and Fig.2 show examples how the calculated exponents perfectly
match the experimental relaxation curves in case of Pyrex and Vespel specimens
(standard calibration materials routinely used to calibrate LaserComp’s FOX50 
Heat Flow Meter instruments).

To get the best possible accuracy the array of experimental points should be
used for calculations using the Least Squares Method to find three parameters of the
single exponent:

- some initial value 0 (at time zero);

- final value at infinite time; and

- characteristic number of the exponent ie , related with rate of the
relaxation, i.e. number of the point when the difference 0 - 
diminishes e times (e= 2.71828…). 

Analytical formula describing the array of i (i= 1…N) is:

(i) = (0 - ) exp{- i / ie} +  (5)

These three parameters can be calculated using the Method of Least Squares
to “predict” the final value  of thermal conductivity at infinite time. The
calculated ie parameter should be related with the value of the specimens’ thermal 
diffusivity k= /Cp.We used the Mathcad’s “genfit”generalized regression



Figure 1. Comparison of the calculated exponent and experimental relaxation of the calculated
“current” thermal conductivity of the Pyrex 7740 specimens (each reading was taken every 0.64 
seconds).

Figure 2. Comparison of the calculated exponent and experimental relaxation of the calculated
“current” thermal conductivity of the Vespel specimens (each reading was taken every 0.64 
seconds).
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function [11] to calculate the parameters. The “genfit”function uses three partial
derivatives with respect to the three parameters, and their initial guess values (see
Appendix 2).

Sum of squares of differences between analytical, (i), and experimental, i

values is so-called residue function, F(0 ,, ie ), to be made as small as possible:
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The three parameters, 0 ,  and ie are being calculated by the Mathcad
genfit function in iterations (using Levenberg-Marquardt algorithm) to get better
and better accuracy until the residue function F(0 ,, ie ), becomes small enough
to guarantee that the calculated set of the parameters adequately describes the
experimental exponent. Figure 3 demonstrates how the described algorithm
calculates the “predicted” values of thermal conductivity of Pyrex for various sets 
(or windows) of experimental points.
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CONCLUSIONS

It was shown and experimentally checked that fast and accurate
measurements of absolute thermal conductivity excluding thermal contact resistance
errors are possible using new combined Guarded Hot Plate and Heat-Flow-Meter
method long before reaching the steady state - when the system is in “regular 
regime”.

Prony’s method was proposed and used to determine the point when the
“regular regime” begins, i.e. when a single exponent can be used to describe the 
thermal relaxation of the system. The Least Squares method can be used to calculate
accurately three parameters of the exponential relaxation to calculate thermal
conductivity (and in future, probably, thermal diffusivity as well).
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Express Absolute Two-Thickness Procedure
(using Prony method) by Akhan Tleoubaev

datafile "S:\Documents\PAPERS\ThermalCond 28 Conference\Pyrex.txt" Q READPRN datafile( )
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Appendix 1. Mathcad procedure for calculations of parameters of two unknown exponents using
Prony’s method (Pyrex specimens of 6.60 and 19.08 mm thick).
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The fit function of 3 parameters and its 3 partial derivatives:
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MATHCAD LEAST-SQUARE FIT OF EXPONENT
Calculates 3 parameters of exponential relaxation:
- initial value(u0),
- infinite time value (u1) - is most important for us, and
- number of the reading (u2), when the difference (u-u1) becomes e times
(e=2.71828...) smaller than initial difference (u0-u1).

Appendix 2.Mathcad procedure of the exponential Least Square fit applied to the “current” thermal 
conductivity array relaxing to the final steady-state value (Pyrex specimens of 6.60 and 19.08 mm
thick).


